Methodology and tools for demonstration of Safety

> Rodolfo Avila Facilia AB, Sweden

THE SADRWMS METHODOLOGY

The SAFRAN Tool

Guidelines for safety assessment applied to predisposal waste management – the SADRWMS methodology

Last update: May 2011

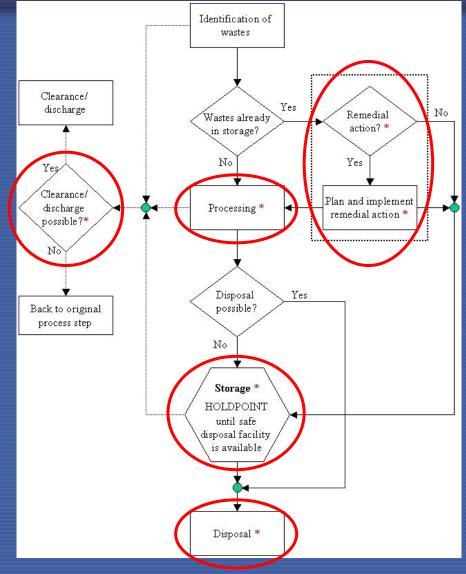
The SADRWMS methodology

- Provides detailed advice for each step of the Safety Assessment
- Describes the different types of assessments that might be required

Peace: The First Half Century

- Provides methods for Hazard identification and screening
- Provides methods for performing qualitative and quantitative assessments for different scenarios

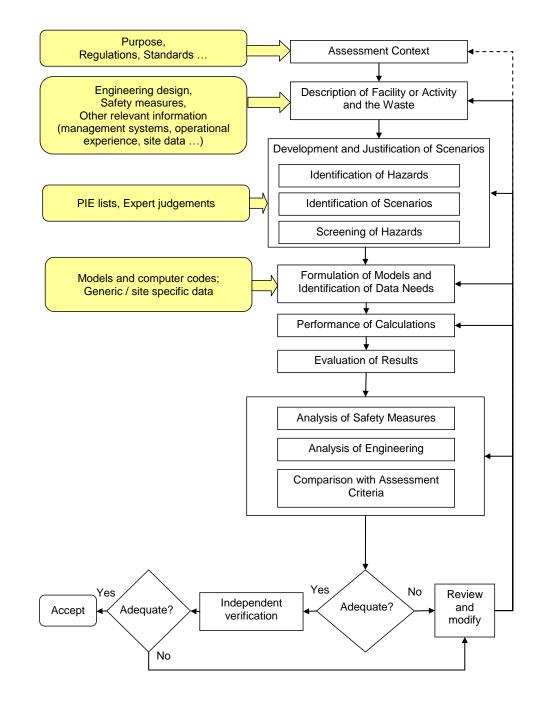
Content of the methodology report


1. Introduction

- 2. The Waste Identification and Pre-disposal Waste Management Process
- 3. Key Components of the Safety Assessment
- Assessment Context of the Pre-disposal Waste Management
 Processes
- 5. Implementation of the Safety Assessment Methodology in the SAFRAN tool
- 6. Hazards Screening and Dose Assessments for Normal Operation Scenarios
- 7. Hazards Screening and Dose Assessments for Accident Scenarios
- 8. References

ANNEXES – Description of models

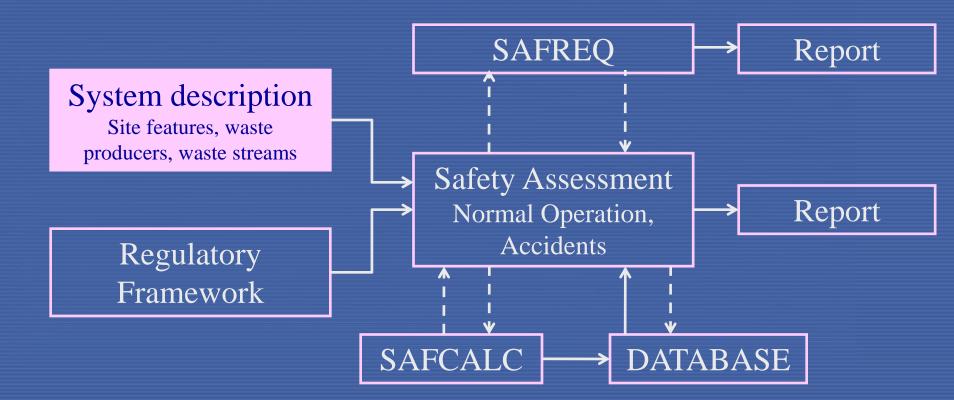
Waste identification and predisposal WM process (section 2)



SADRWMS methodology

Provides detailed guidelines for safety assessment.

Based on the IAEA safety guide DS284: The Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste ,


Purpose of the SAFRAN tool

Implements methodologies developed within the SADRWMS project. It provides aid in:

- Describing predisposal radioactive waste management activities in a systematic way,
- Conducting the safety assessment with clear documentation of the methodology, assumptions, input data and models,
- Establishing a traceable and transparent record of the safety basis for decisions on proposed waste management solutions,
- Demonstrating clear consideration of and compliance with national and international safety standards and recommendations.

SAFRAN components

System Description

For each configuration

- Site
 - Facilities
 - Rooms

» Areas (Storage or Processing)

Physical elements

Safety elements

- Waste Management Activities
 - Processes
 - Check for clearance
- Waste Producers
 - Primary Waste Components
 - » Waste Streams

Types of safety elements

- Site selection
- Safety functions
- Limits and conditions
- Mantainance requirements
- Operational procedures
- Emergency procedures
- Management systems

Can be linked to physical elements and assessments

Waste management activities

- Description
- Output(s) from activities
- Reduction factors
- One and only one WMA can be assigned to an area

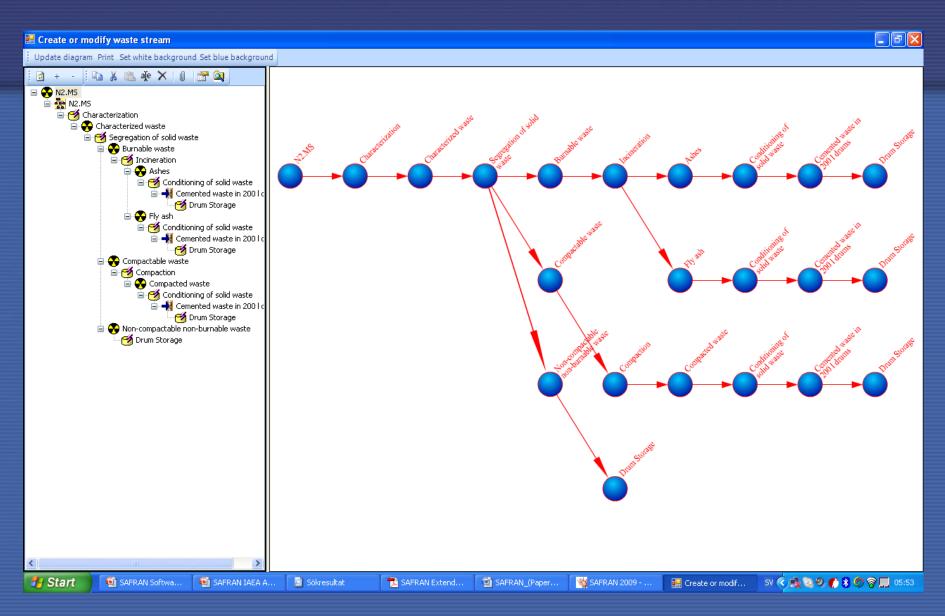
Reduction factors

Define how the activity changes the waste properties: Volume, mass and activity

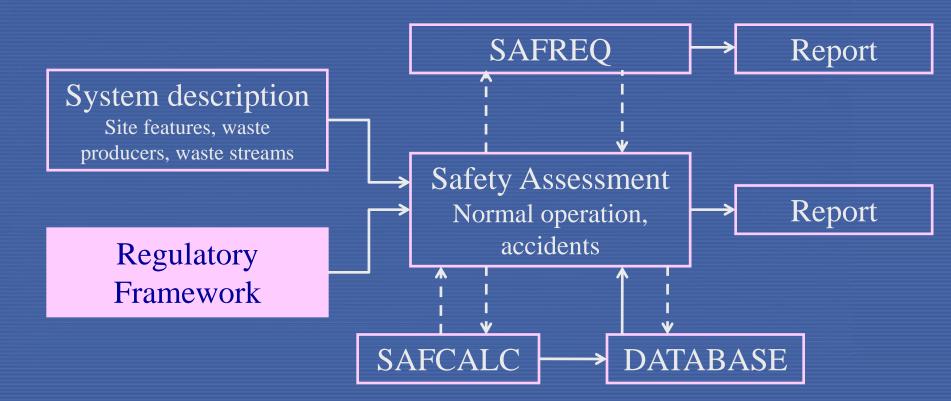
Sorting of waste

Output	Volume	Massa	Activity
Combustible	5 %	5 %	5 %
Non combustible	95 %	95 %	95 %

Check for clearance

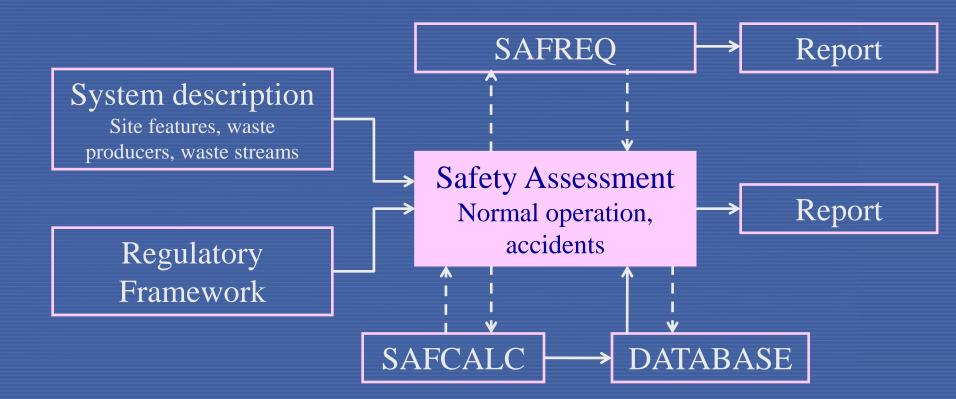

- Possible to make comparisons of activity concentrations in the waste components against IAEA's and user defined clearance criteria
- Clearance criteria are defined for unconditional clearance of solid materials and expressed in Bq/g

Waste Streams


- Waste streams represent the fate of waste components through different steps of processing, storing and clearing of wastes
- Consider changes of waste properties in these steps.

SAFRAN components

Regulatory Framework


- Regulatory requirements
- Criteria Doses in during normal operation (Sv/y) and accidents (Sv).

Workers and members of the public

 Several regulatory frameworks can be added to a project, for example IAEA and national, and all can be used in the SA

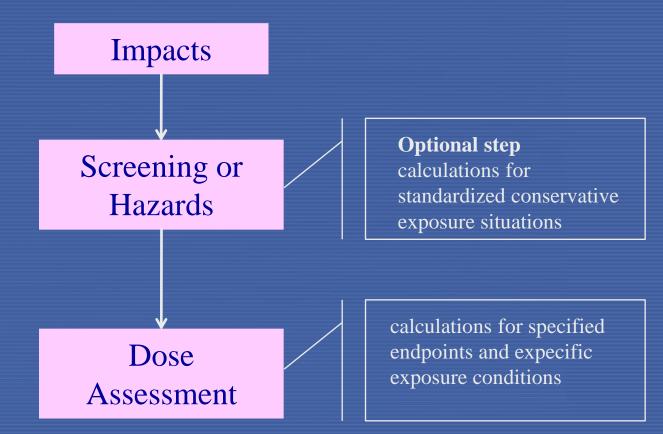
SAFRAN components

Assessment context

- Link to one or more Regulatory Frameworks
- Purpose select from a list or add own
- Scope Define which facilites, rooms and areas will be included in the SA and at what level the assessment is carried out
- Approach
 - PIEs will be defined or only PIE types will be used.
 - Include or not a step for Screening of Hazards.
 - Compliance with Safety Requirements will be assessed or not?

Assessment context of the predisposal WM processes (section 4)

Assessment of waste retrieval		SA-RETRIEVE			
Purpose of assessment	 Assessment of the safety of retrieval oper detailed planning. Establishment of 	detailed planning.			
	a. limits (qualitative or quantitative restr	a. limits (qualitative or quantitative restrictions to any part of the activity, which are applied to ensure compliance with safety			
	in place to ensure compliance with sa requirements); and	 b. controls (processes, procedures or other instruments that are put in place to ensure compliance with safety principles and requirements); and c. conditions (prerequisites, requirements for functions, facilities or organizations that must exist to ensure safety) for the retrieval operations. 			
	or organizations that must exist to ens				
Assessment end points	 Assessment of the retrieval operations, por a. Radionuclide releases caused by the r operations; B. Radionuclide concentrations in environ c. Doses and risks to workers during wa upgrading of the facility; Doses to public (potential exposure gr e. Doses to non-human biota. 	etrieval and upgrading onmental materials; ste retrieval and			
Assessment philosophy	 Use of cautious assumptions, but in view situation these should be as realistic as po Use of actual data to the extent possible as of generic data is restricted to cases in wh not available (see Table 1). 	ssible (see Table 1). nd warranted; i.e. the use			
Assessment timeframes	1. Duration of retrieval activities.				
Remarks	 The assessment of the fate of retrieved was safety assessment. This will be covered by assessments addressing the management s as clearance, discharge, processing, storage 	y other relevant safety teps for these wastes such			



Assessment types

- For normal operation and accidents.
- Doses to workers and members of the public.
- Radiological impacts indoors and outdoors.

Graded approach to the assessments

Normal operation scenarios

Impacts are classified by their location and type:

- Inside the facility (workers exposure)
 - Direct external exposure and exposure via inhalation,
 - Other;
- Outside the facility (public exposure):
 - Releases to air,
 - Liquid discharges,
 - Other.

Screening of hazards and Hazard Quotient

- Screening of hazards implementation of the graded approach;
- For screening of hazards SAFRAN uses the concept of hazard quotient (HQ)

$$HQ = \frac{Impact}{Screening Impact}$$

Impact Category	HQ values
(1)	(2)
Very High	> 100
High	10-100
Medium	1-10
Low	0.1-1
Very Low	< 0.1

HQ: External irradiation and inhalation

$$HQ = \frac{DoseRate_{total}}{ScreeningDoseRate}$$

 $ScreeningDoseRate = \frac{ScreeningDoseWorker}{2}$

ExposureTime

- SAFRAN default values: ٠
 - Screening dose to worker is 0.1 mSv/y,
 - Annual worker exposure time is 2000 h/y (i.e. working time is 8 h per day, 5 days per week and 50 weeks per year).
- User may set its own value for screening dose rate basing on actual conditions to be assessed.

HQ: Releases to atmosphere

Release Rate Screening Release Rate

ScreeningDosePublic $ScreeningReleaseRate = \frac{1}{DoseCalculationFactor_{release}}$

SAFRAN default values: •

HQ

- Screening dose to member of the public is 0.01 mSv/y,
- Release to dose calculation factors (mSv/Bq) are based on the IAEA Safety Report Series No. 19 defined Generic Environmental Model;
- User may set its own value for screening release rate basing on actual conditions to be assessed.

Dose assessments

If scenario is not screened out basing on HQ
dose rate (inside facility)
release / discharge (outside facility)
then dose calculation is performed;

 Calculation continues with already identified impacting parameters (dose rate, release / discharge rate).

Dose assessments (cont.)

• External irradiation and inhalation:

User defines actual exposure time:

 $Dose = DoseRate_{total} \times time_{exposure}$

Releases to atmosphere / Liquid discharges

 SAFRAN includes database of release to dose conversion factors:

 $Dose = ReleaseRate \times DCF$

 $DoseRate_{total} = \sum_{i} DoseRate_{ext}^{i} + \sum_{i} DoseRate_{inh}^{i}$

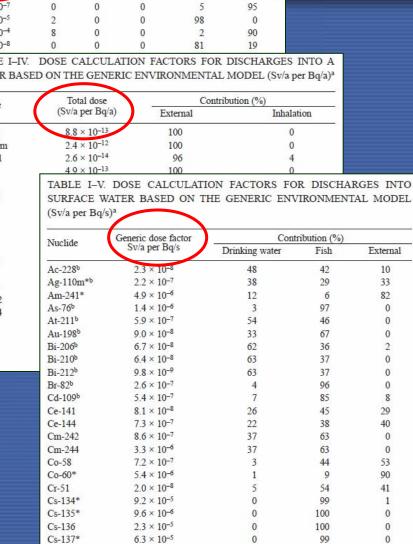
TABLE I-III. DOSE CALCULATION FACTORS FOR DISCHARGES TO THE ATMOSPHERE BASED ON THE GENERIC ENVIRONMENTAL MODEL (Sv/a per Bq/s)a

Generic dose factor

Contribution (%)

Meat

External

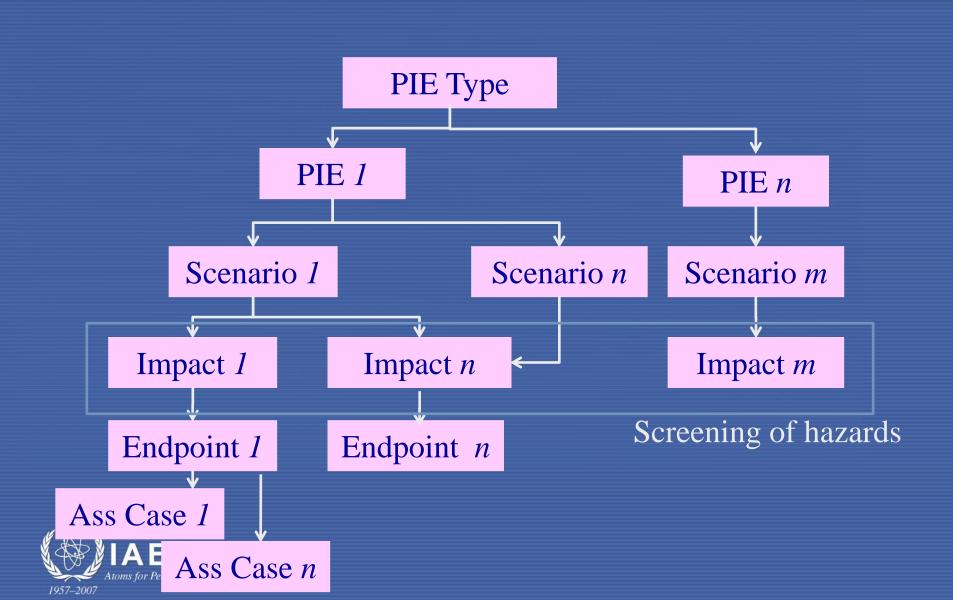

Inhalation

	Nu	uclide	Generic dose factor		
			(Sv/a per Bq/s)	Crops	Milk
Safety Reports Series	Ag	2-228 g-110m n-241* 3-76	4.7 × 10 ⁻⁷ 6.3 × 10 ⁻⁵ 7.9 × 10 ⁻⁴ 6.9 × 10 ⁻⁸	0 2 8 0	0 0 0
No.19	At Au Bi Bi Br Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd	-211* -211* 1-198 -206 -210* -212* -82 1-109 -141 -144 n-242* n-244* -58	TABLE I-IV. SEWER BASE Nuclide Ac-228 Ag-110m Am-241 As-76 At-211 Au-198	DOSE C ED ON TH TC (Sv/ 8.1 2.4 2.6 40 TABL	CALCUL
Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment	Co Cr Cs Cs Cs Cs	-58 50 51 134* 135* 136 137*	Bi-206 Bi-210 Bi-212 Br-82 Cd-109 Ce-141 Ce-144 Cm-242 Cm-244 Co-58 Co-60 Cr-51 Cs-134		per Bq/s) e gb 00m*b h1* o gb gb gb gb L

(International Atomic Energy Agency, Vienna, 2001

Atoms for Peace: The First Half Century

EA


SADRWMS Methodology Report

Dose assessments (cont.)

- Releases to atmosphere / Liquid discharges
 - SAFRAN includes database of release to dose conversion factors;
 - SAFRAN includes SAFCALC tool where IAEA Safety Reports Series No. 19 models are implemented and can be used with user defined parameters;
 - User values of DCF.

Assessments for accidents

Accident scenarios

Impacts are classified by their location and type:

- Inside the facility (workers exposure)
 - Direct external exposure,
 - Releases to air;
 - type of material and stress conditions
 - Other;
- Outside the facility (public exposure):
 - Releases to air,
 - type of material and stress conditions
 - Other.

HQ: External exposure

$$DoseRate = \sum_{k} \sum_{i} N_k \times PAI_k^i \times SGRDC^i$$

- *N* number of affected waste components per particular waste stream;
- PAI Potentially affected inventory of waste component (Bq),
- SGRDC Specific gamma ray dose constant (Sv/h per Bq at distance of 1 m). Values of SGRDC are included in the SAFRAN database.

$$HQ = \frac{Dose \ Rate}{Screening \ Dose \ Rate}$$

• SAFRAN default value for the Screening Dose Rate is 0.1 mSv per exposure time of 1 h.

Potentially Affected Inventory (PAI)

Also known as Material At Risk Is the radionuclide inventory or amount, in Bq, that can be affected during an accident.

Examples

- The PAI for an accident consisting of dropping a waste package equals the total activity in the package.
- The PAI for an accident during a processing activity equals the activity involved in one instance of the activity

HQ: Release inside

$$ReleaseInside_k^i = N_k \times PAI_k^i \times ARF_k^i$$

• ARF – airborne release fraction. SAFRAN includes database for AFR;

$$HQ = \sum_{k} \sum_{i} \frac{ReleaseInside_{k}^{i}}{ScreeningReleaseInside^{i}}$$

- Screening release inside is pre-calculated with SAFCALC tool for 0.1 mSv dose:
 - Accident occurs in a relatively small room of 50 m³ volume,
 - There is no air extraction from the room,
 - All accident released activity is respirable and worker does not wear any protective equipment.

Airborne Release Fractions

- Airborne Release Fraction (ARF) is the fraction of the Potential Affected Inventory that is released to air during the accident.
- The RF depends on the Waste Form, the Radionuclide and the Type of Effect of the accident.
- Values of ARF are given in the SAFRAN Database.
- It is assumed that ARF correspond to respirable fractions.

HQ: Release outside

$$ReleaseOutside^{i} = \sum_{k} ReleaseInside_{k}^{i} \times (1 - FiltrationEfficiency)$$

$$HQ = \sum_{i} \frac{ReleaseOutside^{i}}{ScreeningReleaseOutside^{i}}$$

- Screening release outside is pre-calculated with SAFCALC tool for 0.1 mSv dose:
 - Release occurs from the building at the effective height of 10 m,
 - Critical group members live at a distance of 30 m from the source in the downwind direction.

Comparison of hazards

- Each hazard is characterized
 - Impact (HQ)
 - Probability of scenario

Qualitative Category	Probability during Annual probab life time 1/y	
(1)	(2)	(3)
Very High	> 95 %	> 3,0E-02
High	75-95 %	1,4E-02 - 3,0E-02
Medium	5-75 %	5,0E-04 - 1,4E-02
Low	0,1-5 %	1,0E-05 - 5,0E-04
Very Low	< 0,1 %	< 1,0E-05

Example of Probability-Consequence plots

HQ/Prob	Very Low	Low	Medium	High	Very High
<0.1				SC3	
0.1- 1					SC4
1-10			SC2		
10-100					
>100	SC1				

Dose assessment: direct external exposure

- SAFRAN tool:
 - Simple geometries:
 - Point source,
 - Cube,
 - Disc,
 - Cylinder;
 - Without of with shielding
 - Water,
 - Concrete,
 - Lead.

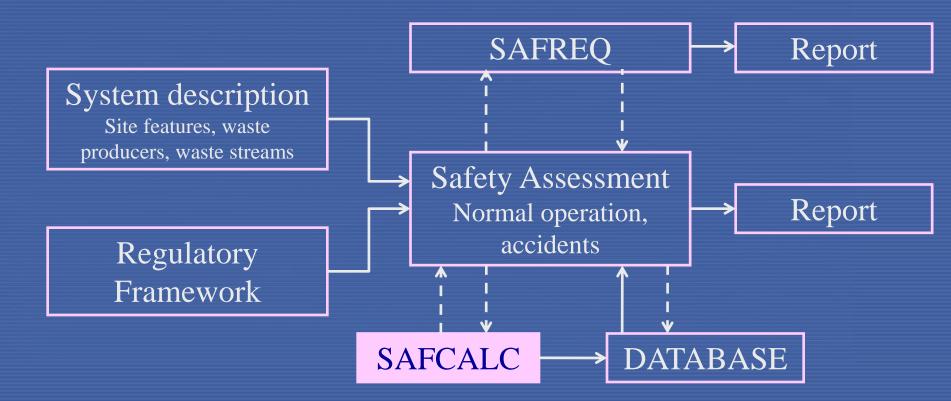
🛃 Select models	
Available models Point with shield Cube with shield Disc with shield Drum axial with shield Drum radial with shield	OK Cancel

Dose assessment: release inside

$$Dose = \sum_{i} Dose_{inh}^{i} + Dose_{extCloud}^{i}$$

 $= \sum_{i} Release^{i} \times DispFactor \times (InhRate \times ProtFactor \times DCC_{inh}^{i} + DCC_{extCloud}^{i})$

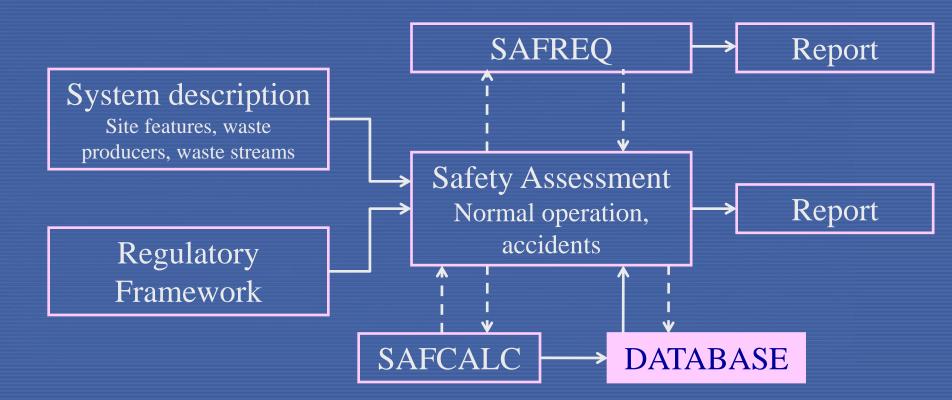
- Use SAFRAN database with pre-calculated DispFactor values
 - Room volume (50, 200, 600, 1200, 3000 m³)
 - Exposure distance (1, 2, 3, 5, 7, 9, 12 m)
 - Exposure time (1, 5, 10, 30, 60 min)
- Use SAFCALC models


Dose assessment: release outside

$$Dose = \sum_{i} Release^{i} \times DCF_{airAcc}^{i}$$

- Use SAFRAN database with pre-calculated DCF values:
 - For Generic environment model;
- Use SAFCALC models.

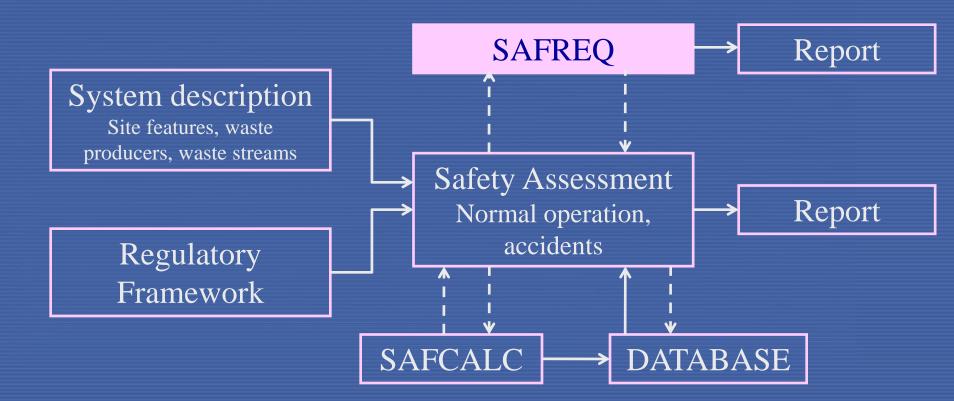
SAFRAN components



Models available in SAFCALC

- IAEA SR-19 models: screening models for routine releases to the atmosphere, lakes, rivers, estuarines and coastal areas.
- Model for accidental releases to the atmosphere.
- Model for accidental releases inside a room.
- Simple dosimetry models: point source, disc, cylinder, cube (with and without shielding)

SAFRAN components



Database

- Radionuclide half lives.
- Clearance levels.
- Gamma constants dose rates at 1 m from a point source.
- Screening dose rates for Normal and accidental situations.
- Screening release rates for Normal operation.
- Screening releases for accidental situations.
- Release Fractions.
- Dispersion factors.
- Dose Conversion Factors for Normal and accidental situations.

SAFRAN components

SAFREQ

- Tool for auditing of compliance with IAEA safety requirements.
- Two versions: stand alone and incorporated the in the SA module
- Questionnarie for each requirement
- Capability to regenate a report

SAFRAN website

- www.safran.facilia.se
- Free download of the software and documentation
- Online User Guide
- Tutorials
- SAFRAN projects TNIT test case
- Discussion Forum

